Waves and aggregation patterns in myxobacteria.

نویسندگان

  • Oleg A Igoshin
  • Roy Welch
  • Dale Kaiser
  • George Oster
چکیده

Under starvation conditions, a population of myxobacteria aggregates to build a fruiting body whose shape is species-specific and within which the cells sporulate. Early in this process, cells often pass through a "ripple phase" characterized by traveling linear, concentric, and spiral waves. These waves are different from the waves observed during slime mold aggregation that depend on diffusible morphogens, because myxobacteria communicate by direct contact. The difference is most dramatic when waves collide: rather than annihilating one another, myxobacterial waves appear to pass through one another unchanged. Under certain conditions, the spacing and location of the nascent fruiting bodies is determined by the wavelength and pattern of the waves. Later in fruiting body development, waves are replaced by streams of cells that circulate around small initial aggregates enlarging and rounding them. Still later, pairs of motile aggregates coalesce to form larger aggregates that develop into fruiting bodies. Here we present a mathematical model that quantitatively explains these wave and aggregation phenomena.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clocks and patterns in myxobacteria: a remembrance of Art Winfree.

At the beginning of their aggregation phase waves of cell density sweep across the surface of myxobacteria colonies. These waves are unlike any other in biology. Waves can be linear, concentric or spiral and when they collide, instead of annihilating one another they appear to pass through each other unchanged. Moreover, the wavelength determines the spacing and pattern of fruiting bodies that ...

متن کامل

Rippling of myxobacteria.

Myxobacteria colonies during their aggregation phase propagate complex waves over their surface. These waves are fundamentally different from the analogous phenomenon in diffusion-reaction systems or in populations of Dictyostelium discoideum where colliding waves annhilate. Myxobacterial waves appear to pass through one another, analogous to solitons. Moreover, individual bacteria oscillate ba...

متن کامل

Role of streams in myxobacteria aggregate formation.

Cell contact, movement and directionality are important factors in biological development (morphogenesis), and myxobacteria are a model system for studying cell-cell interaction and cell organization preceding differentiation. When starved, thousands of myxobacteria cells align, stream and form aggregates which later develop into round, non-motile spores. Canonically, cell aggregation has been ...

متن کامل

Two-stage aggregate formation via streams in myxobacteria.

In response to adverse conditions, myxobacteria form aggregates that develop into fruiting bodies. We model myxobacteria aggregation with a lattice cell model based entirely on short-range (nonchemotactic) cell-cell interactions. Local rules result in a two-stage process of aggregation mediated by transient streams. Aggregates resemble those observed in experiment and are stable against even ve...

متن کامل

Developmental waves in myxobacteria: A distinctive pattern formation mechanism.

In early stages of their development, starving myxobacteria organize their motion to produce a periodic pattern of traveling cell density waves. These waves arise from coordination of individual cell reversals by contact signaling when they collide. Unlike waves generated by reaction-diffusion instabilities, which annihilate on collision, myxobacteria waves appear to pass through one another un...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 101 12  شماره 

صفحات  -

تاریخ انتشار 2004